《三角函数的简单应用》高一年级下册PPT课件.pptx
三角函数模型的简单应用第一章三角函数栏目导航自主预习学案互动探究学案课时作业学案010203自主预习学案第一章三角函数1大海中航行需要正确地计算航行的方向,需要掌握包括三角函数在内的广泛的数学知识.(1)根据实际问题的图象求出函数解析式.(2)三角函数作为描述现实世界中____________的一种数学模型,因此可将实际问题抽象为与三角函数有关的简单函数模型.(3)利用搜集的数据,作出__________,通过观察散点图进行____________而得到函数模型.最后利用这个函数模型来解决相应的实际问题.周期现象散点图函数拟合第一章三角函数[知识点拨]三角函数模型应用注意点(1)一般地,所求出的函数模型只能近似地刻画实际情况,因此应特别注意自变量的取值范围.(2)应用数学知识解决实际问题时,应注意从背景中提取基本的数学关系,并利用相关知识来理解.√1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)三角函数是描述现实世界中周期变化现象的重要函数模型.()(2)与周期有关的实际问题都必须用三角函数模型解决.()(3)若一个简谐振动的振动量的函数解析式是y=3sin(4x+π6),则其往复振动一次所需时间为12秒.()(4)若电流I(A)随时间t(s)变化的关系是I=4sin200πt,t∈[0,+∞),则电流的最大值为4A.()××√1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)三角函数是描述现实世界中周期变化现象的重要函数模型.()(2)与周期有关的实际问题都必须用三角函数模型解决.()(3)若一个简谐振动的振动量的函数解析式是y=3sin(4x+π6),则其往复振动一次所需时间为12秒.()(4)若电流I(A)随时间t(s)变化的关系是I=4sin200πt,t∈[0,+∞),则电流的最大值为4A.()第一章三角函数D2.如图,单摆从某点开始来回摆动,离开平衡位置O的距离scm和时间ts的函数关系式为s=6sin(2πt+π6),那么单摆来回摆动一次所需的时间为()A.2πsB.πsC.0.5sD.1s[解析]本题已给出了单摆离开平衡位置O的距离scm和时间ts的函数关系式,单摆来回摆一次所需的时间即为此函数的一个周期.即ω=2π,所以T=2πω=1.2.如图,单摆从某点开始来回摆动,离开平衡位置O的距离scm和时间ts的函数关系式为s=6sin(2πt+π6),那么单摆来回摆动一次所需的时间为()A.2πsB.πsC.0.5sD.1s[解析]本题已给出了单摆离开平衡位置O的距离scm和时间ts的函数关系式,单摆来回摆一次所需的时间即为此函数的一个周期.即ω=2π,所以T=2πω=1.第一章三角函数3.电流I(A)随时间t(s)变化的关系是I=3sin100πt,t∈[0,+∞),则电流I变化的周期是__________.150s150s互动探究学案第一章三角函数2已知表示电流强度I与时间t的函数关系式I=Asin(ωt+φ)(A>0,ω>0).(1)若电流强度I与时间t的函数关系图象如图所示,试根据图象写出I=Asin(ωt+φ)的解析式;命题方向1三角函数模型在物理中的应用⇨典例1(2)为了使I=Asin(ωt+φ)(A>0,ω>0,φ<π2)中t在任意一段1100秒的时间内电流强度I能同时取得最大值A与最小值-A,那么正整数ω的最小值是多少?(2)为了使I=Asin(ωt+φ)(A>0,ω>0,φ<π2)中t在任意一段1100秒的时间内电流强度I能同时取得最大值A与最小值-A,那么正整数ω的最小值是多少?第一章三角函数[思路分析]对于(1),由于解析式的类型已经确定,只需根据图象确定参数A,ω,φ的值即可.其中A可由最大值与最小值确定,ω可由周期确定,φ可通过特殊点的坐标,解方程求得.对于(2),可利用正弦型函数的图象在一个周期中必有一个最大值点和一个最小值点来解.第一章三角函数[解析](1)由题图知,A=300.T=160-(-1300)=150,∴ω=2πT=100π.∵(-1300,0)是该函数图象的第一个零点,∴-φω=-1300.∴φ=ω300=π3.符合φ<π2,∴I=300sin(100πt+π3)(t≥0).(2)问题等价于T≤1100,即2πω≤1100,∴ω≥200π.∴正整数ω的最小值为629.[解析](1)由题图知,A=300.T=160-(-1300)=150,∴ω=2πT=100π.∵(-1300,0)是该函数图象的第一个零点,∴-φω=-1300.∴φ=ω300=π3.符合φ<π2,∴I=300sin(100πt+π3)(t≥0).(2)问题等价于T≤1100,即2πω≤1100,∴ω≥200π.∴正整数ω的最小值为629.第一章三角函数『规律总结』解决函数图象与解析式对应问题的策略利用图象确定函数y=Asin(ωx+φ)的解析式,实质就是确定其中的参数A,ω,φ.其中A由最值确定;ω由周期确定,而周期由特殊点求得;φ由点在图象上求得,确定φ时,注意它的不唯一性,一般是求φ中最小的φ.第一章三角函数〔跟踪练习1〕本例(1)中,在其他条件不变的情况下,当t=10秒时的电流强度I应为多少?[解析]由例1(1)可得I=300sin(100πt+π3)(t≥0),将t=10秒代入可得,I=1503安培.[解析]由例1(1)可得I=300sin(100πt+π3)(t≥0),将t=10秒代入可得,I=1503安培.第一章三角函数命题方向2三角函数模型在生活中的应用⇨典例2如图为一半径为3m的水轮,水轮圆心O距离水面2m,已知水轮自点B开始1min旋转4圈,水轮上的点P到水面距离y(m)与时间x(s)满足函数关系式y=Asin(ωx+φ)+2,则有()A.ω=2π15,A=3B.ω=152π,A=3C.ω=2π15,A=5D.ω=152π,A=5A如图为一半径为3m的水轮,水轮圆心O距离水面2m,已知水轮自点B开始1min旋转4圈,水轮上的点P到水面距离y(m)与时间x(s)满足函数关系式y=Asin(ωx+φ)+2,则有()A.ω=2π15,A=3B.ω=152π,A=3C.ω=2π15,A=5D.ω=152π,A=5第一章三角函数『规律总结』1.解决与三角函数模型相关问题,关键是将实际问题转化为三角函数模型.2.三角函数模型在物理中的应用主要体现在简谐运动中,其中对弹簧振子和单摆的运动等有关问题考查最多,尤其要弄清振幅、频率、周期、平衡位置等物理概念的意义和表示方法.[解析]由1min旋转4圈,则转1圈的时间为T=14min=14×60=15(s),则ω=2πT=2π15.又由图可知,A=3.[解析]由1min旋转4圈,则转1圈的时间为T=14min=14×60=15(s),则ω=2πT=2π15.又由图可知,A=3.第一章三角函数〔跟踪练习2〕如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(2,-2),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()C〔跟踪练习2〕如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(2,-2),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()第一章三角函数[解析]∵P0(2,2),∴∠P0Ox=π4.按逆时针转时间t后得∠POP0=t,∠POx=t-π4.此时P点纵坐标为2sin(t-π4),∵d=2sin(t-π4).当t=0时,d=2,排除A、D;当t=π4时,d=0,排除B.[解析]∵P0(2,2),∴∠P0Ox=π4.按逆时针转时间t后得∠POP0=t,∠POx=t-π4.此时P点纵坐标为2sin(t-π4),∵d=2sin(t-π4).当t=0时,d=2,排除A、D;当t=π4时,d=0,排除B.利用数据作出散点图,对图象形状进行判断,构建函数模型求其中的参数.数据拟合三角函数问题典例3已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t).下表是某日各时的浪高数据:t(时)03691215182124y(米)1.51.00.51.01.51.00.50.991.5已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t).下表是某日各时的浪高数据:t(时)03691215182124y(米)1.51.00.51.01.51.00.50.991.5第一章三角函数经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;(2)根据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天的上午800﹕时至晚上2000﹕时之间,有多少时间可供冲浪者进行活动?[思路分析]本题以实际问题引入,注意通过表格提供的数据来抓住图形的特征.第一章三角函数[解析](1)由表中数据,知周期T=12,∴ω=2πT=π6.由t=0,y=1.5,得A+b=1.5.又由t=3,y=1.0,得b=1.0,∴A=0.5,b=1.0,即振幅为12.∴y=12cosπ6t+1.[解析](1)由表中数据,知周期T=12,∴ω=2πT=π6.由t=0,y=1.5,得A+b=1.5.又由t=3,y=1.0,得b=1.0,∴A=0.5,b=1.0,即振幅为12.∴y=12cosπ6t+1.第一章三角函数(2)由题意知,当y>1时才对冲浪者开放,∴12cosπ6t+1>1,∴cosπ6t>0,∴2kπ-π2<π6t<2kπ+π2,即12k-3
提供《三角函数的简单应用》高一年级下册PPT课件.pptx会员下载,编号:1701021113,格式为 xlsx,文件大小为42页,请使用软件:wps,office Excel 进行编辑,PPT模板中文字,图片,动画效果均可修改,PPT模板下载后图片无水印,更多精品PPT素材下载尽在某某PPT网。所有作品均是用户自行上传分享并拥有版权或使用权,仅供网友学习交流,未经上传用户书面授权,请勿作他用。若您的权利被侵害,请联系963098962@qq.com进行删除处理。