Login
升级VIP 登录 注册 安全退出
当前位置: 首页 > word文档 > 学习教育 > 线代答案,2023年考研线代答案

线代答案,2023年考研线代答案

收藏

本作品内容为线代答案,格式为 doc ,大小 331304 KB ,页数为 9页

线代答案


('线性代数期末部分复习题参考答案要点一、判断下列各题是否正确1.矩阵A、B的积AB=0,则A=0或B=0。(否)2.设A为一任意矩阵,则A+AT,AAT均为对称矩阵。(是)3.设对矩阵A施行初等变换得到矩阵B,且已知秩(A)=r,秩(B)=s,则r=s。(是)4.A、B均为n阶可逆矩阵,则(AB)*=A*B*。(否)5.设n阶方阵A、B、C满足关系式ABC=E,则BCA=E。(是)6.设A、B为n阶方阵,则,(A-1B-1)T=(ATBT)-1。(是)7.等价的矩阵的秩相等。(是)8.若矩阵PTAP为对称矩阵,则A为对称矩阵。(否)9.在4阶行列式中,项a13a34a42a21带正号。(否)10.A*是n阶方阵A的伴随矩阵,则(2A)*=2A*(否)11.在5阶行列式中,设aij为第i行第j列元素,Aij为aij的代数余子式。则,a31A41+a32A42+a33A43+a34A44+a35A45=0(是)12.若A*是n阶可逆方阵A的伴随矩阵,则,A*=An-1。(是)13.若A、B是同阶方阵,则(A+B)2=A2+2AB+B2。(否)14.等价的向量组的秩相等。(是)15.A*是n阶方阵A的伴随矩阵,则A*A=AA*=AE。(是)16.在4阶行列式中,项a12a34a43a21带负号。(否)17.若n阶矩阵A可逆,则A的n个列向量线性相关(否)18.若矩阵A、B相似,则矩阵A、B合同。(否)19.实二次型f(x1,x2,x3)=是半正定二次型。(是)20.已知三阶矩阵A的三个特征值是-1,1,2,则A=-2(是)21设A是4×5矩阵,秩(A)=3,则A中的3阶子式都不为0(否)22若矩阵A、B合同,则矩阵A、B相似。(否)23.设A、B为n阶可逆方阵,则(AB)-1=A-1B-1。(否)24..若A为对称矩阵,则PTAP为对称矩阵。(是)25.在5阶行列式中,设aij为第i行第j列元素,Aij为aij的代数余子式。则a51A51+a52A52+a53A53+a54A54+a55A55=0(否)26.若矩阵A中所有t阶子全为式0,则秩(A)≤t。(否)27.n维零向量是任何一组n维向量的线性组合。(是)28.正交矩阵的行列式等于1或-1。(是)29.任一实对称矩阵一定能与对角矩阵相似。(是)30.实二次型f(x1,x2,x3)=是正定二次型。(否)31若一个向量组线性相关,则该向量组的任一部分组都线性相关。(否)32若向量α与β正交,则对任意实数a、b,aα与bβ也正交(是)33若矩阵A满足AT=A-1,则矩阵A为正交矩阵(是)34.若矩阵A、B相似,则矩阵A、B等价(是)35.n阶矩阵A非奇异的充要条件是A的行向量都是非零向量。(否)36.若λ1和λ2分别是n阶矩阵A、B的特征值,则λ1+λ2是n阶矩阵A+B的特征值,(否)37.二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为2(是)二.单项选择题1.A,B为三阶方阵,矩阵X满足AXABXBBXAAXBE\uf02d\uf03d\uf02d\uf02b则(B).(A)221()XAB\uf02d\uf03d\uf02d;(B)11()()XABAB\uf02d\uf02d\uf03d\uf02d\uf02b;(C)11()()XABAB\uf02d\uf02d\uf03d\uf02b\uf02d(D)以上答案都不对.2.A、B、C为n阶方阵,且ABC\uf03d,A、B、C的列向量组分别为12,,,n\uf061\uf061\uf061\uf0d7\uf0d7\uf0d7;12,,,n\uf062\uf062\uf062\uf0d7\uf0d7\uf0d7;12,,,n\uf067\uf067\uf067\uf0d7\uf0d7\uf0d7.若12,,,n\uf067\uf067\uf067\uf0d7\uf0d7\uf0d7线性相关,则(D).(A)12,,,n\uf061\uf061\uf061\uf0d7\uf0d7\uf0d7线性相关;(B)12,,,n\uf062\uf062\uf062\uf0d7\uf0d7\uf0d7线性相关;(C)(A)与(B)都成立;(D)(A)或(B)成立.3.设,AB为三阶矩阵,且2(32)3rAAE\uf02b\uf02b\uf03d,若()2rB\uf03d则()rABB\uf02b\uf03d(B).(A)1;(B)2;(C)3;(D)无法判断.4.设三阶矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03d3232\uf067\uf067\uf061A,\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03d322\uf067\uf067\uf062B,其中32,,,\uf067\uf067\uf062\uf061均为三维行向量,已知18\uf03dA,2\uf03dB,则\uf03d\uf02dBA(B).(A)1;(B)2;(C)3;(D)4.5.若,AB都是三阶可逆矩阵,则下列结论不一定正确的是(D).(A)()TTTABBA\uf03d.(B)111()ABBA\uf02d\uf02d\uf02d\uf03d.(C)()ABBA\uf03d.(D)222()ABBA\uf03d.6.若A为三阶方阵,将矩阵A第一列与第三列交换得矩阵B,再把矩阵B的第二列加到第三列得矩阵C,则满足AQC\uf03d的可逆矩阵Q为(C).(A)010100101\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(B)010100011\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(C)001011100\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(D)011100001\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.7.若,AB都是n阶方阵,且0B\uf0b9,0AB\uf03d,则必有(C).(A)0B\uf0b9.(B)0B\uf0b9.(C)0TA\uf03d.(D)222()ABAB\uf02d\uf03d\uf02b8.已知向量组123,,\uf061\uf061\uf061的秩为3,向量组1234,,,\uf061\uf061\uf061\uf061的秩为3,向量组1235,,,\uf061\uf061\uf061\uf061的秩为4,则向量组1234523,,,\uf061\uf061\uf061\uf061\uf061\uf061\uf061\uf02d\uf02d,的秩为(B).(A)3.(B)4.(C)5.(D)不能确定9.r(A)=r(A,b)是非齐次线性方程组Axb\uf03d有无穷多解的(B).(A)充分条件.(B)必要条件.(C)既非充分条件又非必要条件.(D)不能确定.10.若向量组1(1,3,6,2)T\uf061\uf03d,2(2,1,2,1)T\uf061\uf03d\uf02d,3(1,1,,2)Ta\uf061\uf03d\uf02d\uf02d的秩为2,则a\uf03d(B).(A)1.(B)-2.(C)2.(D)-1.11.若BA,都是n阶方阵,且0\uf0b9B,0\uf03dAB,则必有(B).(A)0B\uf0b9.(B)0A\uf03d.(C)0B\uf0b9.(D)222)(BABA\uf02b\uf03d\uf02b.12.下列矩阵中,不能相似于对角矩阵的是(A).(A).\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d200120011(B)110120002\uf02d\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(C)110020001\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8.(D)111020002\uf0e6\uf0f6\uf0e7\uf0f7\uf02d\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.13.已知A是n阶可逆矩阵,则与A必有相同特征值的矩阵是(C).(A)1A\uf02d.(B)2A.(C)TA.(D)A.14.若方程组\uf0ef\uf0ee\uf0ef\uf0ed\uf0ec\uf03d\uf02b\uf03d\uf02b\uf02d\uf03d\uf02b\uf02b020209873232321xtxxxxxx存在非零解,则常数t=[D]。(A)2(B)4(C)-2(D)-415.设有n阶方阵A与B等价,则[C]。(A)A=B(B)A≠B(C)若A≠0,则必有B≠0(D)A=-B16.若A为n阶可逆矩阵,下列各式正确的是[D]。(A)(2A)-1=2A-1(B)2A=2A(C)\uf028\uf029AAA11\uf02d\uf02d\uf03d(D)(A-1)T=(AT)-117.设6115210112344321\uf02d\uf02d\uf03dA,则4A41+3A42+2A43+A44=[A](A)0(B)1(C)2(D)318.已知可逆方阵\uf0fa\uf0fb\uf0f9\uf0ea\uf0eb\uf0e9\uf02d\uf02d\uf03d\uf02d21731A,则A=[B]。(A)\uf0fa\uf0fb\uf0f9\uf0ea\uf0eb\uf0e9\uf02d\uf02d3172(B)\uf0fa\uf0fb\uf0f9\uf0ea\uf0eb\uf0e93172(C)\uf0fa\uf0fb\uf0f9\uf0ea\uf0eb\uf0e9\uf02d\uf02d2173(D)\uf0fa\uf0fb\uf0f9\uf0ea\uf0eb\uf0e9\uf02d\uf02d217319.设矩阵A、B、C满足AB=AC,则B=C成立的一个充分条件是[C]。(A)A为方阵(B)A为非零矩阵(C)A为可逆方阵(D)A为对角阵20.432011113214304324321)(xxxxxf\uf03d,则x4的系数是[B]。(A)2(B)1(C)-1(D)-221.若A为三阶方阵,将矩阵A第一行与第三行交换得矩阵B,再把矩阵B的第一行加到第二行得矩阵C,则满足QA=C的可逆矩阵Q为(C)(A)010100101\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(B)010100011\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(C)001011100\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.(D)011100001\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8.22.下列不是矩阵A可逆充分必要条件的是(D)(A)A≠0(B)A是非奇异矩阵(C)A的任一特征值不为零(D)A是满秩矩阵。23.设n阶方阵A与n阶方阵B等价,则(C)(A)A=B(B)A与B合同(C)r(A)=r(A,B)(D)A与B相似24.若A为n阶可逆矩阵,下列各式正确的是(D)(A)(2A)-1=2A-1(B)2A=2A(C)(2A)*=2A*(D)(2A-1)T=2(AT)-125.A为n阶矩阵,每个n维向量都是齐次线性方程组Ax=0的解,则秩(A)=(D)(A)1(B)n(C)n-1(D)026.若向量组α1=(1,1,3,1)T,α2=(1,1,a,1)T,α3=(5,-3,7,-11)T的秩为2,则a\uf03d(B)(A)1.(B)3.(C)-3.(D)-1.27.设A是m×n矩阵,Ax=0是线性方程组Ax=b的导出组,若m<n,则(C)A.Ax=b必有无穷多解B.Ax=b必有唯一解C.Ax=0必有非零解D.Ax=0必有唯一解28.设二次型f(x)=xTAx正定,则下列结论中正确的是(B)A.对任意n维列向量x,xTAx都大于零B.A的特征值都大于零C.f的标准形的系数都大于或等于零D.A的所有子式都大于零29.设矩阵A=,则以下向量中是A的特征向量的是(A)(A).(1,1,1)T(B).(1,1,3)T(C).(1,1,0)T(D).(1,0,-3)T30.若矩阵B的列向量组能由矩阵A的列向量组线性表示,则(A)(A)秩(B)≤秩(A)(B)秩(B)<秩(A)(C)秩(B)>秩(A)(D)秩(B)≥秩(A)31.设A为3阶实对称矩阵,A的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为(C)(A).0(B).1(C).2(D).332.若A、B相似,则下列说法错误的是(B)(A).A与B等价(B).A与B合同(C).A=B(D).A与B有相同特征值33.设3阶实对称矩阵A的特征值分别为2,1,0,则矩阵A(B)(A).正定(B).半正定(C).负定(D).半负定34.设α1,α2是非齐次方程组Ax=b的解,β是对应的齐次方程组Ax=0的解,则Ax=b必有一个解是(D)A.α1+α2B.α1-α2C.β+α1+α2D.β+35.设3元非齐次线性方程组Ax=b的两个解为α=(1,0,2)T,β=(1,-1,3)T,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为(C)A.k1(1,0,2)T+k2(1,-1,3)TB.(1,0,2)T+k(1,-1,3)TC.(1,0,2)T+k(0,1,-1)TD.(1,0,2)T+k(2,-1,5)T36.矩阵A=的非零特征值为(B)A.4B.3C.2D.137.4元二次型的秩为()A.4B.3C.2D.138.设3阶实对称矩阵A的特征值为λ1=λ2=0,λ3=2,则秩(A)=(B)A.0B.1C.2D.339.二次型的正惯性指数p为()A.0.B.1C.2D.340.设向量,若有常数a,b使,则(A)A.a=-1,b=-2B.a=-1,b=2C.a=1,b=-2D.a=1,b=241.设P为正交矩阵,向量的内积为()=2,则()=(D)A.B.1C.D.242.设向量组α1=(1,2),α2=(0,2),β=(4,2),则(D)A.α1,α2,β线性无关B.β可由α1,α2线性表示,但表示法不惟一C.β不能由α1,α2线性表示D.β可由α1,α2线性表示,且表示法惟一43.下列矩阵是正交矩阵的是()A.B.C.D.三、填空题1.设A、B为n阶非零矩阵,ABO\uf03d,且A的阶梯形为1000nE\uf02d\uf0e9\uf0f9\uf0ea\uf0fa\uf0eb\uf0fb,则矩阵B的秩=12.已知1111111111111aDbc\uf03d,则此行列式的所有代数余子式之和,1nijijA\uf03d\uf03d\uf0e5-(a-1)(b-1)(c-1)3.已知(1,1)Tx\uf03d是\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e8\uf0e6\uf03daA011的一个特征向量,则\uf03da2.4.已知A是3阶方阵,123,,\uf061\uf061\uf061是三维线性无关的向量.若112A\uf061\uf061\uf061\uf03d\uf02b,223A\uf061\uf061\uf061\uf03d\uf02b,313A\uf061\uf061\uf061\uf03d\uf02b,则A的行列式等于2.5.设,AB均为三阶矩阵,2,3AB\uf03d\uf02d\uf03d,则2TAB=96.1.6.设A是4阶矩阵,伴随矩阵A的特征值是\uf02d\uf02d1,2,4,8,则矩阵A的全部特征值是14,2,1,2\uf02d\uf02d.7.若向量组1(1,3,6,2)T\uf061\uf03d,2(2,1,2,1)T\uf061\uf03d\uf02d,3(1,1,,2)Ta\uf061\uf03d\uf02d\uf02d的秩为2,则a\uf03d-2.8.若矩阵111111tAtt\uf0e6\uf0f6\uf0e7\uf0f7\uf03d\uf02d\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8为正定的,则t满足的条件为t>2.9.已知A为3阶可逆矩阵,A是A的伴随矩阵,若2A\uf03d,则11()4AA\uf02d\uf02d=-4.10.设A=110122114312121\uf02d\uf0e6\uf0f6\uf0e7\uf0f7\uf02d\uf02d\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8,则0Ax\uf03d的基础解系中所含向量的个数是2.11.已知22021202x\uf02d\uf0e6\uf0f6\uf0e7\uf0f7\uf02d\uf02d\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8与10000002y\uf0e6\uf0f6\uf0e7\uf0f7\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8相似,则y=4+x.12.矩阵112203112A\uf02d\uf0e6\uf0f6\uf0e7\uf0f7\uf03d\uf0e7\uf0f7\uf0e7\uf0f7\uf0e8\uf0f8的逆矩阵为.13.若矩阵111111tAtt\uf0e6\uf0f6\uf0e7\uf0f7\uf03d\uf02d\uf0e7\uf0f7\uf0e7\uf0f7\uf02d\uf0e8\uf0f8为正定的,则t满足的条件为t>2.14.设21321,,,,\uf062\uf062\uf061\uf061\uf061都是4维列向量,且4阶行列式,,3221121nm\uf03d\uf03d\uf061\uf062\uf061\uf061\uf061\uf062\uf061\uf061则4阶行列式\uf028\uf029\uf03d\uf02b21123\uf062\uf062\uf061\uf061\uf061___n-m____________15.已知321,,\uf061\uf061\uf061线性相关,3\uf061不能由21,\uf061\uf061线性表示则21,\uf061\uf061线性__相关________16.设A是nm\uf0b4阶矩阵,,B是sn\uf0b4阶矩阵,,\uf028\uf029rAR\uf03d,且0\uf03dAB,则\uf028\uf029BR的取值范围是_0≤_\uf028\uf029BR__≤n-r____________17.设A是4\uf0b43矩阵,且A的秩\uf028\uf0292\uf03dAR且\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf03d301020201B则\uf028\uf029\uf03dABR___2_______-18.设0是矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03daA01020101的特征值,则\uf03da____1_________19.设2123222213212),,(xxxkkxxxxxf\uf02b\uf02b\uf02b\uf03d是正定二次型,则t的取值区间为k>120.矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf03d314120401A对应的二次型是_______________21.设\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf02d\uf03d44644325xA相似于对角阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6321,则\uf03dx522.设A为3阶方阵,A为伴随矩阵,81\uf03dA,则1831AA\uf02d\uf0f7\uf0f8\uf0f6\uf0e7\uf0e8\uf0e6\uf02d=__64_________23.设\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf02d\uf03d14523121xA是不可逆矩阵,则\uf03dx___11/3_________24..________,___,04334221321111\uf03d\uf03d\uf02dxxxx的根方程__-2,4,1__25.\uf028\uf029.________)(,,2010,2101\uf03d\uf03d\uf03d\uf0f7\uf0f7\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf03dARA则矩阵设\uf061\uf062\uf062\uf061__1_____26.设A、B为4阶方阵,且2\uf02d\uf03dA,3\uf03dB,则_________1))((\uf03d\uf02dTAB_-1/6__27..______,\uf03dAA则相似于单位矩阵设___E_________28.A是34\uf0b4矩阵,其秩\uf028\uf029A=1,\uf0f7\uf0f7\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf03d0030000108532001B,则秩\uf028\uf029BA=_1____29.._________,0,11223112321\uf03d\uf03d\uf0f7\uf0f7\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf02d\uf03dtAxtA则有非零解且方程组设__-1_______30.设方阵A有一特征值为λ,则\uf028\uf029rrAaAaEaAf\uf02b\uf02b\uf02b\uf03d\uf04c10的特征值为。31.\uf028\uf029\uf028\uf029.___________1312,212121的对应矩阵是\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e8\uf0e6\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e8\uf0e6\uf03dxxxxxxf32..______________,00010112满足的条件是则是正定矩阵kkkA\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03d33.已知四元非齐次线性方程组Ax=b,R(A)=3,α1,α2,α3是他的三个解向量,其中α1+α2=(1,1,0,2)T,α2+α3=(1,0,1,3)T,则该非齐次线性方程组的通解_____34.设BA,是3阶矩阵,且\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03d\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03d3232,32rrBrrA\uf062\uf061,其中32,,,rr\uf062\uf061均为3维行向量,3,15\uf03d\uf03dBA,则行列式\uf03d\uf02dBA-135.已知方阵A满足02\uf03d\uf02b\uf02bcEbAaA(cba,,为常数0\uf0b9c),则\uf03d\uf02d1A36.设02002000110011\uf0b9kkk,则k应满足___k≠1,2,-2____________.37.设21,,\uf061\uf061\uf062线性相关,32,,\uf061\uf061\uf062线性无关,则321,,,\uf061\uf061\uf061\uf062线性__相_____关.38.设\uf028\uf029\uf028\uf029\uf028\uf0292,3,1,,0,,1,1,1321\uf03d\uf03d\uf03d\uf061\uf061\uf061ba线性相关,则ba,满足关系式___a=2b_________39.设A满足022\uf03d\uf02b\uf02bEAA,则A有特征值____-1_________40.设A为n阶方阵,\uf028\uf029,3\uf02d\uf03dnAR且321,,\uf061\uf061\uf061是0\uf03dAx的三个线性无关的解向量,则0\uf03dAx的一个基础解系为____α1,α2,α3__________.41.二次型\uf028\uf0293231212322213212245,,xxxxxxaxxxxxxf\uf02d\uf02d\uf02b\uf02b\uf02b\uf03d正定,则a满足条件____a>2_________.42.设方阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf02d\uf02d\uf02d\uf02d\uf03d124242421A相似于对角矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d45t,则\uf03dt__5________.43.设A是43\uf0b4矩阵,\uf028\uf029,2\uf03dAR\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf02d\uf02d\uf03d111211120B,则\uf028\uf029\uf03dBAR___2_____44.矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf02d\uf02d\uf03d314120401A对应的二次型是_______________45.设A、B为n阶矩阵,ABO\uf03d,且A的n个列向量线性无关,则矩阵B的秩=0.46.已知非零向量321,,\uf061\uf061\uf061线性相关,3\uf061不能由21,\uf061\uf061线性表示,则秩(21,\uf061\uf061)=_1___。47.已知3阶可逆矩阵A的特征值为1,2,-2,则A的三个特征值为=-4,-2,2,A的代数余子式A11+A22+A33=-4。48.设0是矩阵\uf0f7\uf0f7\uf0f7\uf0f8\uf0f6\uf0e7\uf0e7\uf0e7\uf0e8\uf0e6\uf03daA01020101的特征值,则\uf03da_____1________49..实对称矩阵所对应的二次型f(x1,x2,x3)=________________.50.设A是m×n矩阵,齐次线性方程组Ax=0只有零解的充分必要条件是系数矩阵A的秩r(A)=n.',)


  • 编号:1700739280
  • 分类:学习教育
  • 软件: wps,office word
  • 大小:9页
  • 格式:docx
  • 风格:商务
  • PPT页数:331304 KB
  • 标签:

广告位推荐

相关学习教育更多>